学霸告诉你:高考数学冲刺怎么冲?往哪冲?附不同题型答题套路
发布时间:2017-03-02 11:57 发布作者:中国阳光升学网 浏览量:
进入3月份,离2017年高考又更进一步,如何让高考数学成绩能更进一步提高,或是如何避免高考数学造成不必要的失分。这些问题是全国高考生最关心的话题之一,那你就需要避免这些高考数学失分点。
一、高考数学要取得高分,首先选择、填空题要尽量全拿
很多高考生为了高考能取得好成绩,这段时间总是不断挑战难题,找难题做,忽视基础,如对选择题和填空题重视度就不够。纵观近几年高考数学考试情况,发现很多考生主要丢分不是在解答题,反而是一些基础题中。
高考数学的选择题和填空题题型分布是按照由易到难,有些考生觉得前面的简单题自己是百分之百能做,几乎要让自己秒过,造成简单题出错,后面提高题卡壳,两头空。
因此,解决选择和填空问题,一定稳扎稳打,题目没有简单与难,只有对与错,同时跟要讲究方法如概念辨析法,从题设条件出发,通过对数学概念的辨析,进行少量运算或推理,直接选择出正确结论的方法。此类题目常涉及一些似是而非、很容易混淆的概念或性质,这需要考生在平时注意辨析有关概念,准确区分相应概念的内涵与外延,同时在审题时要多加小心,准确审题以保证正确选择。一般说来,这类题目运算量小,侧重判断,下笔容易,但稍不留意则易误入命题者设置的“陷阱”。
二、高考数学不仅考查知识深度,更考查知识广度
很多人应该还记得2015湖北高考数学文科卷第20题,几何题中出现了“鳖臑(bi nào)”“阳马”两个名词。当时这两个“数学古词”的出现让很多考生一片哀嚎,甚至一度在网上成为热门话题。
高考作为国家选拔人才重要“考试”,考查不仅仅是考生掌握多少知识点,更考查考生运用知识的能力,考查学生综合素质。因此,我们高考复习一定要全面,从广度和深度下手,特别是谨防冷门知识。如正态分布、线性回归、频率分布的直方图等等知识点,在平时的学习过程中,考生很少去关注这些知识点,但在每年高考中都会考到。
三、高考答题,至少要让改卷老师看的清楚明白
无论中考还是高考,采用电子阅卷已经好几年了。在平时学习中,作业和一些小考,几乎不会电子阅卷,这就造成一些考生学习态度松懈,如字迹不清晰、潦草,扫描到电脑上,阅卷老师无法辨别,只能扣分或零分,得不偿失。
高考答题,一定要尽量做到字迹工整。
四、解答题看的不只是一个答案
高考选择判断对错,看你选什么。填空题判断对错,就看填写的答案。
但解答题不是这样评分,不仅答案要对,更重要是看解题过程。如一些考生感觉自己答案做对了,但就是不能把一道题目全部分数拿走,究其原因就是忽略答题步骤所致。
选择题十大速解方法:
排除法、增加条件法、以小见大法、极限法、关键点法、对称法、小结论法、归纳法、感觉法、分析选项法;
填空题四大速解方法:
直接法、特殊化法、数形结合法、等价转化法。
解答题答题模板
专题一、三角变换与三角函数的性质问题
1、解题路线图
①不同角化同角
②降幂扩角
③化f(x)=Asin(ωx+φ)+h
④结合性质求解。
2、构建答题模板
①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。
②整体代换:将ωx+φ看作一个整体,利用y=sin x,y=cos x的性质确定条件。
③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。
④反思:反思回顾,查看关键点,易错点,对结果进行估算,检查规范性。
专题二、解三角形问题
1、解题路线图
(1) ①化简变形;②用余弦定理转化为边的关系;③变形证明。
(2) ①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。
2、构建答题模板
①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。
②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。
③求结果。
④再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。
专题三、数列的通项、求和问题
1、解题路线图
①先求某一项,或者找到数列的关系式。
②求通项公式。
③求数列和通式。
2、构建答题模板
①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。
②求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。
③定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。
④写步骤:规范写出求和步骤。
⑤再反思:反思回顾,查看关键点、易错点及解题规范。
专题四、利用空间向量求角问题
1、解题路线图
①建立坐标系,并用坐标来表示向量。
②空间向量的坐标运算。
③用向量工具求空间的角和距离。
2、构建答题模板
①找垂直:找出(或作出)具有公共交点的三条两两垂直的直线。
②写坐标:建立空间直角坐标系,写出特征点坐标。
③求向量:求直线的方向向量或平面的法向量。
④求夹角:计算向量的夹角。
⑤得结论:得到所求两个平面所成的角或直线和平面所成的角。
专题五、圆锥曲线中的范围问题
1、解题路线图
①设方程。
②解系数。
③得结论。
2、构建答题模板
①提关系:从题设条件中提取不等关系式。
②找函数:用一个变量表示目标变量,代入不等关系式。
③得范围:通过求解含目标变量的不等式,得所求参数的范围。
④再回顾:注意目标变量的范围所受题中其他因素的制约。
专题六、解析几何中的探索性问题
1、解题路线图
①一般先假设这种情况成立(点存在、直线存在、位置关系存在等)
②将上面的假设代入已知条件求解。
③得出结论。
2、构建答题模板
①先假定:假设结论成立。
②再推理:以假设结论成立为条件,进行推理求解。
③下结论:若推出合理结果,经验证成立则肯。 定假设;若推出矛盾则否定假设。
④再回顾:查看关键点,易错点(特殊情况、隐含条件等),审视解题规范性。
专题七、离散型随机变量的均值与方差
1、解题路线图
(1)①标记事件;②对事件分解;③计算概率。
(2)①确定ξ取值;②计算概率;③得分布列;④求数学期望。
2、构建答题模板
①定元:根据已知条件确定离散型随机变量的取值。
②定性:明确每个随机变量取值所对应的事件。
③定型:确定事件的概率模型和计算公式。
④计算:计算随机变量取每一个值的概率。
⑤列表:列出分布列。
⑥求解:根据均值、方差公式求解其值。
专题八、函数的单调性、极值、最值问题
1、解题路线图
(1)①先对函数求导;②计算出某一点的斜率;③得出切线方程。
(2)①先对函数求导;②谈论导数的正负性;③列表观察原函数值;④得到原函数的单调区间和极值。
2、构建答题模板
①求导数:求f(x)的导数f′(x)。(注意f(x)的定义域)
②解方程:解f′(x)=0,得方程的根。
③列表格:利用f′(x)=0的根将f(x)定义域分成若干个小开区间,并列出表格。
④得结论:从表格观察f(x)的单调性、极值、最值等。
⑤再回顾:对需讨论根的大小问题要特殊注意,另外观察f(x)的间断点及步骤规范性。
更多>>高校资讯
- 05/23宁夏:关于查询2024年普通高
- 05/23江苏:2024年普通高校招生体
- 05/17高考后职业规划的现实与未
- 05/17职业规划中的误区与对策
- 05/17职业规划与个人发展
- 05/17从兴趣出发,规划未来职业
- 05/17选择适合自己的专业,奠定
- 05/17高考后职业规划的四大步骤
更多>>招生政策
- 12/04教育部开展义务教育阳光招
- 12/04事关招生入学,教育部出手
- 12/0494所!2024年高校专项计划招
- 12/04合肥市中小学招生政策发布
- 12/04徐汇区义务教育招生入学常
- 12/04贵州:关于做好2025年高职院
- 12/04523所高校招收退役大学生士
- 12/04北大、清华等523所高校承担